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ABSTRACT Manipulative experimentation that features random assignment of treatments, replication, and controls is an effective way to

determine causal relationships. Wildlife ecologists, however, often must take a more passive approach to investigating causality. Their

observational studies lack one or more of the 3 cornerstones of experimentation: controls, randomization, and replication. Although an

observational study can be analyzed similarly to an experiment, one is less certain that the presumed treatment actually caused the observed

response. Because the investigator does not actively manipulate the system, the chance that something other than the treatment caused the

observed results is increased. We reviewed observational studies and contrasted them with experiments and, to a lesser extent, sample surveys.

We identified features that distinguish each method of learning and illustrate or discuss some complications that may arise when analyzing

results of observational studies. Findings from observational studies are prone to bias. Investigators can reduce the chance of reaching erroneous

conclusions by formulating a priori hypotheses that can be pursued multiple ways and by evaluating the sensitivity of study conclusions to biases

of various magnitudes. In the end, however, professional judgment that considers all available evidence is necessary to render a decision

regarding causality based on observational studies. ( JOURNAL OF WILDLIFE MANAGEMENT 72(1):4–13; 2008)
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The word management in the title of this journal suggests
that we care about causality. Wildlife managers perform
some management action and would like wildlife to respond
in a law-like, predictable manner. But causality is a more
challenging concept in our field than in, for example, the
physical sciences, where models of the behavior of atoms,
planets, and other inanimate objects are applicable over a
wide range of conditions (Barnard 1982), and there are few
controlling factors. Outside of some of the physical sciences,
however, notions of causality reduce to those of probability.
Causation then means that an action ‘‘tends to make the
consequence more likely, not absolutely certain’’ (Pearl
2000:1). This is so in wildlife ecology because of the
multitude of factors influencing a system. As an example,
liberalizing hunting regulations is expected to increase
harvest by hunters. In any single instance, however,
liberalization may not cause a greater harvest because other
influences impinge, such as the number of animals in the
population, weather conditions during the hunting season,
and the price of gasoline and its effect on hunter activity.

The papers in this special section are from a symposium on
observational studies at the twelfth Wildlife Society confer-
ence in Madison, Wisconsin, USA. The purpose of that
symposium was to share information on strategies for
designing observational studies and analyzing data from
them, and to foster a better understanding of the potential
and the limitations of observational studies. We review
observational studies, which are common in our science, and
contrast them with experiments and, to a lesser extent,
sample surveys. We identify features that distinguish each
method of learning (borrowing freely from Johnson 2002,

Johnson 2006, and other cited sources). We then indicate
some complications that may arise when analyzing results of
observational studies. We conclude by pointing out how the
other articles in this special section can help scientists deal
with observational studies.

CORNERSTONES OF MANIPULATIVE
EXPERIMENTATION

Consider an example. Suppose one wants to determine how
bobolinks (Dolichonyx oryzivorus) are affected by a treatment
such as removal of woody vegetation in grasslands that had
been invaded by trees and shrubs. The treatment effect (T)
on a particular grassland can be defined as

T ¼ YtðuÞ � YcðuÞ; ð1Þ

where Yt (u) is the number of bobolinks in grassland u after
the treatment, and Yc(u) is the number of bobolinks in that
grassland if the treatment had not been applied. If the
grassland is cleared, then one can observe Yt (u) but not Yc(u).
If the treatment is not applied, then one can observe Yc(u)
but not Yt (u). This leads to what has been termed the
fundamental problem of causal inference: one cannot
observe the values of Yt (u) and Yc(u) on the same unit
(Rubin 1974, Holland 1986). That is, any particular
grassland is either cleared or not.

Two solutions to this problem have been identified
(Holland 1986). The first requires 2 units (u1 and u2, here
grasslands) and the assumption that they are identical. Then
the treatment effect T is estimated to be

T ¼ Ytðu1Þ � Ycðu2Þ; ð2Þ

where u1 is treated and u2 is not. This approach is based on
the very strong assumption that the 2 grasslands, if not1 E-mail: terry_shaffer@usgs.gov
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cleared, would have the same number of bobolinks, that is,
Yc(u2) ¼ Yc(u1) and, if cleared, then Yt (u2) ¼ Yt (u1). We
cannot test these assumptions, unfortunately, because one
grassland had been cleared and the other had not. The
assumption can be made more plausible by matching the 2
units as closely as possible or by believing that the units are
identical. Physicists are more likely to believe that 2
molecules are identical than ecologists will think 2 grass-
lands the same, however.

The second solution has been termed statistical (Holland
1986). We can consider an expected, or average, causal effect
T over all units in some population:

T ¼ EðYt � YcÞ; ð3Þ

where, unlike with the first solution, different units can be
observed. The statistical solution replaces the causal effect of
the treatment on a specific unit, which is impossible to
observe, by the average causal effect in the population,
which is possible to estimate.

It is clear that a control, something to compare with the
treated unit, is needed for either approach. In the statistical
approach, randomization is often invoked. For example, if
we are to compare bobolink numbers on a treated grassland
and an untreated one, we could reach an erroneous
conclusion if the grasslands differed greatly in size or
vegetation structure. One way to protect against such
possibly misleading outcomes is to decide at random which
grassland is treated and which is not. Random assignment
can be done in a controlled experiment but not in most
observational studies.

Suppose in our example that there are 4 grasslands in our
universe of grasslands of interest. And suppose, following
the first solution, that they are identical: each would have 3
bobolinks if it were cleared and 1 bobolink if not (Table 1).
Then, no matter which grassland we selected for treatment
and which was the comparison, we would estimate the
treatment effect to be 2, which is just right. But suppose that
the grasslands themselves varied; we will maintain the nice
simplifying assumption that the treatment effect would be 2
no matter what grassland we treated (Table 1). Then, if we
treated one grassland and observed another as a control,
there would be 12 possible combinations that could
constitute our sample (Table 2). And our estimate of the

treatment effect would vary depending on which grasslands
we selected. For example, if we treated grassland 1 and
grassland 3 served as a control, we would estimate our
treatment effect as 3 � 0 ¼ 3. The 12 possible estimates of
treatment effect range from �2 to 6. The average is 2, the
correct value, but no possible sample would yield exactly that
value.

So, even if we assigned treatments at random, it may just
happen that one grassland would be large and have desirable
vegetation structure (possibly grassland 4 in our example),
and the other would be small with unsuitable vegetation
(grassland 3). Such a sample would generate an estimated
treatment effect (6) far from the correct value (2). This
consideration leads us to the third important criterion for
determining causation: replication. Repeating the random-
ization process and treatments on several grasslands makes it
unlikely that grasslands in either group would be consis-
tently more favorable to bobolinks. If we took a sample of
size 2 for both treatment and control groups, there would be
6 possible samples, with estimated treatment effects ranging
from �1 to 5 (Table 3). Note that samples with one
grassland each in the treatment and in the control group
yield estimates that vary around the true value (i.e.,
unbiased), but are very spread out (i.e., low precision; Fig.
1), whereas samples of size 2 in each group give estimates
that cluster somewhat more closely around the true value
(i.e., greater precision; Fig. 2). These then form the
cornerstones for assessing the effect of some treatment with
a manipulative experiment: controls, randomization, and
replication (Fisher 1926).

One of the roles of randomization is to make variation

Table 1. Two examples of 4 grasslands, the value (no. of bobolink pairs)
each would have if it were treated (i.e., woody vegetation removed), and the
value it would have if it were not treated. In the example at left, all
grasslands have identical values under each scenario. In the example at right,
grasslands vary in values irrespective of treatment. In both examples, the
effect of the treatment is 2 for all grasslands.

Grassland

Grasslands identical Grasslands vary

Value
if treated

Value if
not treated

Value
if treated

Value if
not treated

1 3 1 3 1
2 3 1 5 3
3 3 1 2 0
4 3 1 6 4

Table 2. All possible samples of size 1 each, treated and untreated, from the
population of grasslands that vary.

Treated grassland Untreated grassland Difference

1 2 0
1 3 3
1 4 �1
2 1 4
2 3 5
2 4 1
3 1 1
3 2 �1
3 4 �2
4 1 5
4 2 3
4 3 6

Table 3. All possible samples of size 2 each, treated and untreated, from the
population of grasslands that vary.

Treated grasslands Untreated grasslands Difference

1,2 3,4 2
1,3 2,4 �1
1,4 2,3 3
2,3 1,4 1
2,4 1,3 5
3,4 1,2 2
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among sample units, due to variables that are not accounted
for, act randomly, rather than in some consistent and
potentially misleading manner. Randomization thereby
reduces the chance of confounding with other variables.
Instead of controlling for effects of those unaccounted-for
variables, randomization makes them tend to cancel one
another, at least in large samples. In addition, random-
ization reduces any intentional or unintentional bias of the
investigator. Because all outcomes are equally likely,
randomization further provides an objective probability
distribution for a test of significance (Barnard 1982).

Randomization by itself is not enough; replication is
necessary for randomization to be useful. The desirable
properties of randomization in the selection of study units
are largely conceptual; that is, they pertain hypothetically to
some long-term average. Randomization, for example, tends
to make errors act randomly, rather than in some consistent
fashion. However, in any single observation or study, the
error may well be consistent. It is only through replication
that large-sample or long-term properties hold. Replication
provides 2 important benefits. First, it reduces error because
an average of independent errors tends to be smaller than a
single error. Replication serves to ensure against making a
decision based on a single, possibly unusual, outcome of a
treatment or measurement of a unit. Second, because we
have several estimates of the same effect, we can estimate the
error, as the variation in those estimates reflects error. We
then can determine if the values of the treated units are
unusually different from those of the untreated units. The
validity of that estimate of error depends on the exper-
imental units having been drawn randomly; thus, the
validity is a joint property of randomization and replication.

EXPERIMENTS AND OBSERVATIONAL
STUDIES CONTRASTED

Manipulative experimentation is an effective way to
determine causal relationships. The investigator poses

questions of nature via experiments, such as clearing woody
vegetation. Because the investigator determines how the
system is manipulated, the chance that something other
than the treatment causes the observed results is reduced.
Opportunities for complex interactions also are reduced
because randomization lessens the chance that some
unmeasured variable will affect the response in a way that
is inconsistent among treatments.

Wildlife ecologists sometimes face severe difficulties
meeting the needs of control, randomization, and repli-
cation in manipulative experiments. Many systems are too
large and complex for ecologists to manipulate (Macnab
1983). Often putative treatments (sometimes referred to as
exposure factors; e.g., oil spills) are applied by others, and
wildlife ecologists are called in to evaluate their effects. In
such situations, randomization is impossible and replication
undesirable.

Observational studies lack one or more of the critical
elements and, although they can be analyzed similarly to an
experimental study (Cochran 1983), the investigator is less
certain that the presumed treatment actually caused the
observed response. In addition, observational studies are
susceptible to situations involving complex interactions
resulting from unmeasured variables that differentially affect
the various levels of the treatment variable (see Riggs et al.
2008). Such interactions can greatly complicate the
interpretation of treatment effects, but also can be
informative because they reflect the inherent complexity of
natural systems.

Sample surveys differ from experiments and, more subtly,
from observational studies in that one endeavors either to
estimate some characteristic over some domain, such as the
number of mallards (Anas platyrhynchos) in the major
breeding range in North America, or to compare variables
among groups, such as the median age of hunters compared
with nonhunters. In contrast, experiments and observational
studies involve some sort of treatment.

Figure 1. Distribution of estimated treatment effects from all possible
samples of size 1 each, treated and untreated, from a simulated population
of grasslands that vary.

Figure 2. Distribution of estimated treatment effects from all possible
samples of size 2 each, treated and untreated, from the simulated population
of grasslands that vary.
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ADJUSTING FOR INTRINSIC
DIFFERENCES

Consider the difference between a single treated unit and a
single untreated unit (grasslands, in our example): Yti� Ycj,
where unit i was treated and unit j was not. If the units were
intrinsically identical (having value l), then Yti ¼ l þ T,
where T is the treatment effect, Ycj¼ l, and so Yti� Ycj¼T.
In our science, however, we cannot expect most units to be
identical except for treatment effect, so we would have Yti¼
liþ T and Ycj¼ lj, where li and lj are the intrinsic values
associated with each unit. Then the difference Yti� Ycj¼ (li

� lj)þ T is no longer a pure measure of T but also reflects
the intrinsic difference between sample units.

If we cannot assume (li � lj) ¼ 0, there are 3 potential
remedies. The first is to randomly select the units, so that
the expected value of (li� lj) will be zero, and to replicate,
so the actual value of the difference will be close to its
expected value of zero. That is the approach taken in
manipulative experiments. The second remedy involves
selecting units that are as similar as possible, that is, (li –
lj) ; 0. In an experimental context, this procedure is termed
blocking, and it can markedly strengthen conclusions from
an analysis. In observational studies, the scientists typically
do not choose the units to receive treatment, but sometimes
they can select units to compare to the treated units. Then
selecting units as similar as possible to the treated units,
except of course for the treatment, will tend to reduce the
value of (li � lj). In observational studies, this is called
matching, which is the counterpart of blocking in
experimental studies. The third remedy is to attempt to
estimate (li � lj) from available covariates associated with
each unit (Eberhardt and Thomas 1991). In our grassland
example, the number of bobolinks might vary in response to
features such as field size, height and density of vegetation,
and relative proportions of graminoid and forb vegetation. If
that relationship can be modeled (e.g., with analysis of
covariance [ANCOVA]; Milliken and Johnson 2002), then
one could estimate li and lj. Then T could be estimated by

T̂ ¼ ðYti � YcjÞ � ðl̂i � l̂jÞ:

This is called statistical adjustment and is an example of
model-based inference, in contrast to the design-based
inference used in the first 2 approaches (Olsen et al. 1999).
Matching requires no knowledge of the actual form of the
relationship between the response variable (here, bobolink
numbers) and the covariates; statistical adjustment does
require that knowledge. Matching is sometimes hampered
by an inability to find untreated units that are sufficiently
similar to the treated ones. In contrast, statistical adjustment
allows comparison units to be markedly different from
treated units, as long as the functional dependence on
covariates is well determined.

We briefly summarize these strategies as follows: blocking
involves the prospective selection of (experimental) units
and is used in experiments to increase precision of estimated
treatment effects. Matching involves the retrospective
selection of (comparison) units and serves the dual role of

increasing precision and reducing bias in observational
studies. Statistical adjustment involves the retrospective
analysis of results.

IMPLICATIONS FOR DATA ANALYSIS

The inability of investigators to randomly assign treatments
in observational studies has important implications for data
analysis. Techniques developed for analyzing data from
experiments are commonly used with observational data as
well. This practice seems perfectly fine on the surface but, as
the following example shows, results can be seriously
misleading.

Our example involves the introduction of fish into
wetlands that support invertebrates used by foraging birds.
The concern is that invertebrate density would be reduced as
a result of predation by fish. We first considered how this
question might be addressed with an experiment. Suppose 6
wetlands were available for study and that invertebrate
density in the absence of fish ranged from 0 to 10 because of
intrinsic differences among wetlands (Table 4).

Twenty outcomes, involving 3 treated wetlands and 3
control wetlands, would be possible from this experiment
(Table 5). Random assignment of treatments would ensure
that all outcomes were equally likely. If the treatment had no
effect, the estimated treatment effect (T̂ ) would range from
�8 to 8, and the expected value, or average in this case, would
be zero. The experiment would generate only 1 of the 20
possible outcomes, however, and the investigator would be
faced with deciding whether that outcome was unusual
enough to infer an effect of the treatment. That decision
would be based on knowledge of the sampling distribution of
T̂ in the absence of a treatment effect (Fig. 3a); that
knowledge would stem from the treatment being randomly
assigned to wetlands. For example, a value of�8 for T̂ would
be improbable enough that, having observed that value, the
investigator might justifiably conclude that the treatment
was having an effect, even though it was not.

How does the above situation differ when treatment
assignment is nonrandom, as is the case with observational
studies? For illustration, we supposed that wetlands D, E,
and F were 4 times more likely to receive fish than were
wetlands A, B, and C. We represented this in terms of
probabilities as P(D)¼P(E)¼P(F)¼ 4/15 and P(A)¼P(B)
¼ P(C) ¼ 1/15, where P(�) was the probability that fish
would be introduced into that wetland. Under this scenario,
the same 20 outcomes would still be possible, but those
outcomes would no longer be equally likely (Table 5). In

Table 4. A population of 6 wetlands, the density of invertebrates in each,
and its depth.

Wetland Invertebrate density Water depth

A 8 2
B 9 4
C 10 1
D 0 12
E 1 9
F 2 9
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fact, T̂ ¼�8 would be the most probable outcome when the
treatment had no effect (Fig. 3b).

Of course, we would not know the true sampling
distribution of T̂ and would have to make some assumption
about it to reach a conclusion about the effect of fish on
invertebrate density. If we used analytical methods devel-
oped for experiments, our implicit assumption would be that
the distribution matched the sampling distribution of the
treatment effect (fish vs. no fish) under random assignment
of treatments (Fig. 3a). Thus, if the study yielded T̂ ¼�8,
we would conclude that the treatment had an effect, when in
fact T̂ ¼ �8 would be the most likely outcome in the
absence of a treatment effect. Our above example demon-
strates that the validity of using conventional methods
developed for experiments (e.g., analysis of variance
[ANOVA]) to analyze data from observational studies
hinges on the assumption that treatments were randomly
assigned.

The reader may be wondering how observational studies
can lead to treatment assignments being as markedly
nonrandom as our example would suggest. It is entirely
plausible that, in the absence of random assignment of
treatments, wetlands with fish would be deeper than
wetlands without fish (Table 4). It is also reasonable to
expect densities of invertebrates of some species to be greater
in shallower wetlands. Thus, the interplay between wetland
depth and both fish presence and invertebrate densities
could give the illusion that invertebrate densities were being
reduced by fish. Confounding like this commonly occurs in
observational studies and points to the need for caution
when interpreting results from observational studies.
Matching might be useful in our example, except that we

would need to include additional wetlands (i.e., shallower
wetlands with fish and deeper wetlands without fish).
Wetland depth is an obvious choice for the matching
variable, but in many situations the choice of an appropriate
matching variable, or variables, will be far from obvious.
Statistical adjustment in the form of ANCOVA (Riggs et al.
2008) might also be effective in this situation, provided data
were available for the confounding variables.

ASSOCIATION VERSUS CAUSATION

Although observational studies and experiments differ in
important ways, they share the common objective of
elucidating causal relations (Cochran 1983). As we have
seen, the importance of randomization in establishing

Table 5. All possible samples of size 3, to be treated, from the population of
6 wetlands (remaining 3 wetlands are controls), the probabilities of each
sample under random and nonrandom assignment of treatments, and the
estimated treatment effect (T̂ ) for each sample.

Assignment of treatment

Treated sample Random Nonrandom T̂

A,B,C 0.05 0.002 8
A,B,D 0.05 0.012 1.3
A,B,E 0.05 0.012 2
A,B,F 0.05 0.012 2.7
A,C,D 0.05 0.012 2
A,C,E 0.05 0.012 2.7
A,C,F 0.05 0.012 3.3
A,D,E 0.05 0.062 –4.0
A,D,F 0.05 0.062 �3.3
A,E,F 0.05 0.062 �2.7
B,C,D 0.05 0.012 2.7
B,C,E 0.05 0.012 3.3
B,C,F 0.05 0.012 4
B,D,E 0.05 0.062 �3.3
B,D,F 0.05 0.062 �2.7
B,E,F 0.05 0.062 �2.0
C,D,E 0.05 0.062 �2.7
C,D,F 0.05 0.062 �2.0
C,E,F 0.05 0.062 �1.3
D,E,F 0.05 0.332 �8.0

Figure 3. Sampling distribution of the treatment effect (fish vs. no fish)
under (a) random and (b) nonrandom treatment assignment for samples of
size 3 from the hypothetical population of wetlands, assuming that the
treatment has no effect. Analysis methods developed for experiments are
based on the distribution shown in (a), whereas observational studies may
result in the distribution shown in (b).
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causality cannot be overstated. Cochran (1983) recommen-
ded that results from observational studies be viewed with
much skepticism, at least initially.

What steps can the investigator take to safeguard against
reaching erroneous conclusions from observational studies?
One important step is acknowledging that bias in observa-
tional studies is not only possible, but likely (Cochran 1983).
Biases can be overt or hidden (Rosenbaum 2002). Overt
biases are known to the investigator and can be neutralized
through matching or analytic adjustment. Hidden biases are
much more problematic because the information needed to
detect or evaluate them is not available. Identifying and
discussing all possible sources of bias and alternative
explanations for the results observed can be helpful in
understanding the potential degree of bias. As obvious as
this advice may seem, it is often overlooked in practice
(Cochran 1965).

Sensitivity analysis is a procedure for quantifying potential
effects of hidden bias (Rosenbaum 2002). Sensitivity
analysis poses the question: how much would inferences
change in response to hidden biases of various magnitudes?
Study conclusions are strengthened if results are found to be
insensitive to biases of expected magnitude.

We illustrate the idea behind sensitivity analysis with the
following example. Suppose that a waterfowl biologist has
hypothesized that first-year breeding gadwall (Anas strepera)
females are more likely to abandon their nests than are more
experienced breeders, perhaps because first-year breeders are
in poorer condition than older females. She investigates her
hypothesis by locating nests, capturing and aging the
females, and monitoring each nesting attempt to determine
nest fate. Her analysis reveals that first-year breeders have an
abandonment rate 3 times that of older females. One
interpretation is that first-year breeders are in fact more
prone to abandon their nests. An alternative explanation is
that first-year breeders experience 3 times greater mortality
while away from the nest. If off-nest mortality information
is not available but the likelihood of a 3-fold difference in
mortality rates is remote, then the original conclusion seems
justified, at least in terms of that source of hidden bias.
Sensitivity analysis attempts to address this type of issue in a
formal way that recognizes sampling variability.

Another important consideration in analyzing and inter-
preting results of observational studies is the value of
developing hypotheses and research questions a priori.
Opportunities for data dredging (Burnham and Anderson
2002) are often great with observational studies because it
may be relatively easy for the investigator to measure a large
number of variables. Measuring numerous variables is the
strategy in many observational studies, partly because the
investigator may be unsure which variables will be useful for
matching or as covariates during data analysis. Some
observational studies are retrospective, meaning that the
data were collected in the past (probably for some other
purpose). Although such secondary data analyses can
provide useful information, serious misuse occurs when
the same data are used to identify a hypothesis and then test

it (Williams et al. 2002). Pitfalls of data dredging are well
established and have received much attention in the
literature (e.g., Burnham and Anderson 2002).

In reference to what could be done to clarify the step
between association and causation in observational studies,
Sir Ronald Fisher said, ‘‘Make your theories elaborate’’
(Cochran 1965:252). We can gain insight into what Fisher
meant by returning to our fish example. If invertebrate
numbers were in fact reduced by fish, then not only would
we expect higher densities in wetlands without fish, but we
also would expect densities in wetlands with fish to be

negatively related to fish abundance or perhaps to fish
biomass. Taking this argument one step further, we also
might expect effects of fish on invertebrate densities to be
mitigated by the abundance of alternative food sources, such
as small fry. Pursuing multiple lines of evidence and
establishing consistency in results pertaining to various
sub-hypotheses allows the investigator to weigh the
evidence and systematically build a case for causation.
Conversely, inconsistent results cast doubt over the nature of
the relationship. In the end, professional judgment that
considers all available evidence is necessary to render a
decision regarding causality (McDonald et al. 2000).

Although it may seem obvious, the most important
consideration, by far, with observational studies is to not
regard the results of any one study as definitive. This is true
for designed experiments, too, but is especially critical for
observational studies. Meta-replication across space and
time that involves multiple independent studies using a
variety of techniques to address the same research question
is paramount for establishing causal relationships with
observational studies (Johnson 2002). Assessing the effect
of smoking on human health provides a classic example of
this. The fact that smoking causes lung cancer in humans
was established through a series of observational studies that
collectively provided overwhelming evidence, relative to the
potential for bias (Rosenbaum 2002). In addition to smokers
having greater incidence of lung cancer than nonsmokers,
incidence was found to increase with exposure, strengthen-

ing the evidence that smoking causes cancer.

ANALYTIC COMPLICATIONS

Until now we have concerned ourselves with theoretical
issues that make the analysis of data from observational
studies problematic. With those issues in mind, we turn our
attention to some practical matters that an investigator is
likely to encounter when using techniques like ANOVA or
ANCOVA to analyze data from observational studies. This
is not an exhaustive list of complications, but it includes
some that we have encountered or have witnessed going
undetected or incorrectly treated in other studies. Our intent
is not to provide detailed solutions to these problems but
rather to alert the reader that the issues may be present.
Most of these complications can be overcome, provided the
investigator recognizes the problem. Assistance from a
statistician with a background in linear models theory may

Shaffer and Johnson � Observational Studies versus Experiments 9



be necessary to address some of the more difficult
complications.

Unbalanced Data
In experimental design lingo, a design is said to be
unbalanced if the number of experimental units varies
among treatments or treatment combinations. A similar
situation often occurs with observational studies. Unbal-
anced observational studies are not problematic so long as
the investigator exercises caution when interpreting results.
Consider an observational study involving 2 treatments
(factors), say A and B. Suppose that both A and B occur at 2
levels (e.g., A might be sex of an individual study animal,
and B might indicate whether the animal had been exposed
or not exposed to some environmental influence), leading to
4 treatment combinations. We define the effect of each
treatment as the difference between level 1 (treated) and
level 2 (untreated). Denote the expected response (i.e.,
population mean) for a given treatment combination as lij,
where i denotes the level of A and j denotes the level of B.
Let nij denote the number of animals observed and ȳij

denote the mean response for a given treatment combina-
tion. The goal of the analysis is to draw inferences about the
unobserved population means (lij) based on values of the
observed sample means (ȳij).

When interactions are found to be unimportant, interest
lies in estimating the main effect of each treatment,
averaging across all levels of other treatments. For example,
the average effect of treatment B is (l11 þ l21)/2 � (l12 þ
l22)/2, and an unbiased estimator of that effect is (ȳ11 þ
ȳ21)/2 � (ȳ12 þ ȳ22)/2. Most analysis software will provide
estimates of the main effects. For example, the LSMEANS
statement of SAS (SAS release 8.2; SAS Institute, Cary,
NC) will produce unbiased estimates of the marginal means.
Confusion can arise with unbalanced data in that some
software packages will also report (n11ȳ11 þ n21ȳ21)/(n11 þ
n21)� (n12ȳ12þn22ȳ22)/(n12þn22). This statistic, which is a
function of the sample sizes and is reported by the MEANS
statement in several SAS procedures, may be useful in
certain situations (e.g., when sample sizes are proportional
to the number of animals in the various populations), but
the statistic is a biased estimator of the main effect and
generally is not useful. This confusion is easily avoided if
analysts understand their software well. An analogous
situation occurs with tests of hypotheses. Care is needed
to ensure that the investigator understands what hypothesis
is actually being tested.

Empty Cells
When one or more treatment combinations is not observed
(i.e., nij¼ 0 for some i and j), the treatment structure is said
to be incomplete. This situation (i.e., the empty cell problem
[Hocking 1985]) is more problematic than unbalanced data
because the investigator usually desires to make inferences
about the unobserved and observed treatment combinations.
For example, the quantity ([l11þl21]/2� [l12þl22]/2) is
still of interest, even if n22 ¼ 0. However, if n22 ¼ 0, this
quantity cannot be estimated without making some

assumptions. Similarly, the usual main effect hypotheses,
such as H0: (l11þ l21)/2¼ (l12þ l22)/2, cannot be tested.
Although it may not be obvious to the user, some software
packages will produce statistics for testing a different
hypothesis (e.g., [l11 þ l21]/2 ¼ l12 or l11 ¼ l12) when
this situation arises. Investigators need to be alert for this
possibility. Familiarity with one’s data and knowledge of
how one’s software handles empty cells are extremely
important.

Analysts should pay close attention to the degrees of
freedom reported by their software for each term in an
ANOVA or ANCOVA model. If the degrees of freedom
for any term are fewer than expected, that is usually an
indication of empty cells. For example, if treatment A has 4
levels and treatment B has 3 levels, then one should expect
the A 3 B interaction term to have (4 � 1) (3 � 1) ¼ 6
degrees of freedom. If the software reports only 5 degrees of
freedom, then some treatment combination is likely missing.
Hopefully the software also will report that the usual main
effects are not estimable. Depending on the number and
arrangement of empty cells, refitting the model without the
interaction term may allow us to estimate the main effects.
However, we do not recommend this remedy unless one has
firm evidence that the interaction between A and B is in fact
negligible.

Covariate Affected by Treatment
Analysis of covariance provides a powerful tool for making
model-based inferences from observational studies. A key
assumption for ANCOVA modeling is that the covariate
should not depend on the treatment (Milliken and Johnson
2002). It is not unusual with observational data, however,
for the range in covariate values to vary with one or more of
the treatments. When this happens, inferences concerning
effects of the treatment can be perplexing and misleading, as
the following example illustrates. In this example, we are
interested in estimating the difference in accumulated body
fat for some species under 2 sets of environmental
conditions. Body fat measurements from a sample of 12
females and 15 males are available for analysis (Fig. 4).
Males clearly have more body fat than females, although
body fat increases with body size, making body size a logical
covariate in the analysis. The relation between body fat and
body size appears to be linear and exhibits the same rate of
change for all 4 treatment combinations. Interactions
between environmental condition and sex appear negligible.
Thus, we can estimate the effect of environmental condition
as the difference in estimated body fat between animals
exposed to environment 1 and those exposed to environment
2 for either males or females. This estimate is typically
computed using the mean value of the covariate (676 g).
Results indicate that body fat is about 13 g greater for
animals exposed to environment 1. Similarly, the effect of
sex is the difference in body fat between males and females
for either of the environments. The estimated sex effect,
evaluated at the mean body size, turns out to be about�12,
suggesting that males have less fat than females, which of
course is not the case. Inspection of the data (Fig. 4) quickly
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reveals that this nonsensical result is an artifact of the
covariate varying by sex. The problem is not difficult to spot
in a simple, contrived example like this, and where a simple
graph can clarify the situation; however, it can easily go
unnoticed when several covariates and several treatments are
involved. Our example clearly illustrates the need to explore
relationships among predictors before fitting models.
Milliken and Johnson (2002) demonstrate a solution to
the problem based on adjusting values of the covariate
(Urquhart 1982).

Zero-Level Studies
The zero-level problem has a long history in experimental
design. Zero-level problems also arise in observational
studies. Suppose an investigator is comparing the effects
of 2 grazing regimes, say season-long and rest–rotation
regimes, on some wildlife response. Each regime is observed
at 4 grazing intensities: high, medium, low, and none. At
first glance, this appears to be a straightforward 2 3 4
treatment structure. The problem, however, is that because
of the zero-intensity level there are only 7 treatment
combinations. Standard ANOVA methods based on a 2 3

4 treatment structure are inappropriate because that
approach uses a model that recognizes 8 treatment
combinations, not 7. Zero-level problems can be accom-
modated by linear models theory (see Hocking 1985), but
wildlife practitioners who have not previously encountered
them may want to confer with a statistician.

Split-Plot Observational Studies
Split-plot experiments are characterized by 2 or more
treatments that are assigned to 2 or more sizes of
experimental units (Milliken and Johnson 1992). A classic
example from agriculture involves the application of a
fertilizer treatment to a plot of land, which is then
subdivided into smaller plots to which different crop
varieties are assigned. The entire setup is then replicated

several times. The treatment assignment process results in
more replicates for the variety treatment than for the
fertilizer treatment. Researchers must take this distinction
into account during the analysis, resulting in separate
estimates for the split-plot and whole-plot error terms.

Split-plot situations are very common in observational
studies, and they are often incorrectly analyzed. We return
to the fish example to illustrate how a split-plot observa-
tional study can arise. Suppose that portions of individual
wetlands are classified according to wetland zone, say deep
marsh and shallow marsh. Wetland zone can then be viewed
as a split-plot treatment that pertains to a portion of a
wetland, whereas presence or absence of fish can be viewed
as a whole-plot treatment that applies to the entire wetland.
The same analytical considerations that apply to split-plot
experiments (see Milliken and Johnson 1992) also apply to
split-plot observational studies.

SPECIAL TOPICS AND CASE STUDIES

The 5 papers in this special section expand on and enhance
some of the ideas we presented, and they illustrate effective
methods for dealing with certain types of observational
studies. Analysis of covariance models are perhaps the most
widely used class of statistical models for analyzing
observational data. In their simplest form, ANCOVA
models combine the features of ANOVA and linear
regression. The ability of ANCOVA models to simulta-
neously accommodate effects of multiple, continuous
covariates and categorical covariates gives them broad appeal
for use in observational studies. Riggs et al. (2008) examine
this rich class of statistical models and expand on a number
of issues that we considered briefly. Examples from 3
wildlife studies illustrate how ANCOVA models can be
used to deal with effects of confounding variables and
complex interactions. Riggs et al. also discuss model-fitting
issues and available software for conducting analyses.

Many commonly used modeling techniques are predicated
on the assumption of statistical independence of residuals. A
frequent complication in the analysis of wildlife data is the
occurrence of spatially or temporally correlated residuals.
Small-scale spatial variation (i.e., spatially correlated resid-
uals) may follow directly from a characteristic of the species
(e.g., herding behavior) or because the animals respond to
resources that vary spatially. Whatever the cause of the
correlations, failure to account for them in the analysis can
lead to improper inferences. Christman (2008) discusses the
concept of spatial autocorrelation and provides an overview
of 2 techniques (geostatistical modeling and lattice models)
for incorporating small-scale variation in regression-type
models. She identifies advantages and disadvantages of each
approach and discusses implications of not modeling small-
scale variation.

Wildlife ecologists often face situations in which many
variables come into play, and sorting out the interactions
among them all is a daunting task. Natural systems are
complex and characterizing them requires multiple equa-
tions, in contrast to simpler processes that might be

Figure 4. Hypothetical data showing body fat (g) of males and females
exposed to 1 of 2 environments (environments distinguished by open vs.
closed symbols) in relation to body size (g). Because body size varies with
sex, standard covariance analysis gives the nonsensical result that males have
less fat than females.
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adequately described by a single equation. Grace (2008)
provides an introduction to structural equation modeling, an
analytic technique developed for summarizing relationships
among multiple variables. He illustrates the methodology
with an example involving a top predator, a mid-level
predator, a prey species, and a habitat component. Grace
also mentions available software and briefly describes some
of the ‘‘opportunities for missteps’’ that should be avoided
(Grace 2008:21).

Diseases among wildlife species are gaining increased
attention from scientists and the public, not only because of
the possible devastation they can cause to animal popula-
tions (e.g., chronic wasting disease among cervids, West
Nile virus among certain birds) but also due to the potential
for transmission to humans (e.g., avian influenza). Surveil-
lance and monitoring of wildlife diseases therefore are
critical activities. Traditional sample survey methods rarely
are used, however, in part because the incidence of disease is
low, at least in its initial stages. More often convenience
sampling is used, such as monitoring animals shot by
hunters. Nusser et al. (2008) address a key issue by
simulating realistic scenarios to contrast the properties of
real-world sampling schemes with more rigorous probability
sampling.

Monitoring of natural resources such as animal popula-
tions represents a very common type of observational study.
Recent years have seen the development of more sophisti-
cated statistical treatments of data that result from
monitoring activities. Link et al. (2008) tackle an intriguing
problem: how to analyze data from 2 disparate programs
that purport to monitor (approximately) the same thing.
The North American Breeding Bird Survey monitors the
size of bird populations in June, when most species are on
territories and actively exhibiting breeding behaviors. The
Christmas Bird Count is less rigorously systematic, but it
provides numbers of birds observed during early winter.
Link et al. (2008) indicate how the 2 surveys can be used in
tandem, with a composite index from both of them
providing more information than does either survey alone.

MANAGEMENT IMPLICATIONS

Scientists in the wildlife profession, as in many other
professions, are envious of the physical sciences, in which
manipulative experimentation plays a strong role in rapidly
advancing understanding. Numerous manipulations are
done in our profession, but they are done by managers,
and the manipulations often lack controls, randomization,
or replication. We rarely take full advantage of the lessons
we could learn from those manipulations (Macnab 1983).
Far too many manipulations of habitat, for example, are
conducted without sufficient follow-up monitoring of
treated and control units to evaluate the actual effects of
the manipulation. Instead, often it is simply assumed that
the consequences will be what they were expected to be. We
should formally adopt the simple yet key ideas of adaptive
resource management and make management decisions
based on our understanding, monitor the consequences of

the management actions, and revise our understanding
based on those results (Walters 1986, Williams et al. 2002).
As Macnab (1983) noted, assumptions underlying a
management action should be treated as hypotheses, rather
than facts. Our ability to learn from management actions
can be enhanced by striving for evaluations that whenever
possible meet the 3 cornerstones of experimentation. But
often wildlife professionals must settle for observational
studies on systems that are affected by numerous influences,
only some of which are known and fewer are measured.

We indeed have a more difficult science to understand
than physics. Rather than feel self-pity about our inability to
manipulate the systems we investigate, we should capitalize
on the realism that observational studies provide and use the
best methods available to learn about the systems. In our
field, carefully controlled experiments rarely capture the full
range of variation that occurs in nature, so observational
studies clearly offer more realistic settings than do experi-
ments. With increased realism, however, comes added
complexity and the danger of misleading results. We hope
the articles in this special section will enhance the ability of
wildlife and other natural resource professionals to more
fully exploit the learning opportunities provided by obser-
vational studies.
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